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Mistakenly classifying morphologically cryptic endemic species as populations of widespread species
potentially interferes with the conservation of biodiversity because undetected endemics that are imper-
illed may lack appropriate protection. It also impedes the reconstruction of the evolutionary history of a
taxon by obscuring the number and distributional limits of species. Here, we present genetic and phylo-
genetic evidence corroborated by morphology that Philippine populations of seven widespread, non-
migratory passerine birds might represent unrecognized, distinct species. An extrapolation based on this
finding suggests that the proportion of endemic bird species in the Philippines could be much higher than
currently estimated. This high degree of cryptic diversity in a well-studied, volant taxon implies that
large numbers of unrecognized species can be expected in less thoroughly studied groups. We predict
that genetic investigations of insular populations of widespread species will frequently reveal unrecog-
nized island endemics, and because of the vulnerability of island habitats and their biota, these taxa
may be particularly susceptible to extinction.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Species richness, endemism, and habitat loss are frequently
used to designate and prioritize areas for conservation (Myers
et al., 2000; Prendergast et al., 1993). Conservation planning there-
fore depends on accurate species-level taxonomy (Mace, 2004).
When a single nominal species actually includes more than one
biologically distinct species, alpha diversity is underestimated
and conservation priorities are improperly assigned because ende-
mic species are overlooked. The importance of discovering such
cryptic diversity within widespread species is now well recognized
(Dulvy and Reynolds, 2009; Marks, 2010; Zou et al., 2007) and is
frequently facilitated through the incorporation of genetic data in
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biodiversity research (Balke et al., 2009; Bickford et al., 2007;
Meier, 2008).

Cryptic species-level diversity occurs not only in poorly under-
stood taxa. Even comparatively well-studied groups such as birds
occasionally yield multiple well-differentiated lineages within a
widespread species (Moyle et al., 2005; Sheldon et al., 2009; Zou
et al., 2007). Here, we examine whether the unexpectedly low pro-
portion of endemic bird species found in the Philippines may be
due to undiscovered species-level differentiation. Endemism in
Philippine birds is currently thought to be just 31%, which is sub-
stantially lower than in Philippine land mammals (64%) and
amphibians (77%) (Kennedy et al., 2000; Ong et al., 2002). Although
lower levels of endemism might be expected in volant animals, this
dearth of avian endemics is surprising considering that the Philip-
pines has been separated from other land masses for millions of
years (Hall, 2001), that many resident forest bird species rarely dis-
perse over water (Moore et al., 2008), and that only one-third of
Philippine birds are migratory or oceanic (Kennedy et al., 2000).
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The biota of the Philippines is regarded as one of the planet’s most
diverse and imperilled (Heaney and Mittermeier, 1997), causing
this archipelago to be classified as a biodiversity hotspot (Myers
et al., 2000). The mistaken inclusion of cryptic endemic species
in widespread taxa can have important consequences for species
survival and the strategic designation of protected areas in the
Philippines. To test the hypothesis that Philippine populations of
widespread Southeast (SE) Asian birds may include cryptic ende-
mic species (Peterson, 2006), we studied 10% of non-endemic, res-
ident Philippine passerine species (N = 7) to examine patterns of
intraspecific genetic diversity and phylogeography across SE Asia.

Few studies have examined patterns of genetic diversity and
speciation in SE Asia despite its dynamic geographic complexity
(Sathiamurthy and Voris, 2006), its historical importance in the
development of biogeographical study (Wallace and Daito, 1865),
and the extreme threats faced by its biota (Sodhi et al., 2004). In
part, legal and logistical difficulties impede studies that require
sample collection across this geographically and culturally diverse
region (Madhusudan et al., 2006). With tissue samples from 16
countries gathered over 18 years by 54 collectors and held in 13
institutions (Supplementary Table 1), we were able to assemble
the most extensive multi-species dataset to date for Southeast
Asian birds. Here, we examine regional patterns of dispersal and
genetic diversity within morphologically defined species.
2. Material and methods

2.1. Taxon sampling

We studied seven focal species fitting the following criteria: (1)
confined to Asia and widespread in SE Asia; (2) amenable to sam-
pling with mist nets; and (3) represented in the world’s avian tis-
sue collections with multiple samples from different localities.
Based on these criteria, we studied seven species: Arachnothera
longirostra (N = 45); Copsychus saularis (N = 51); Dicaeum trigono-
stigma (N = 10); Lalage nigra (N = 9); Nectarinia jugularis (N = 20);
Pycnonotus goiavier (N = 35); Rhipidura javanica (N = 40). All species
but L. nigra have described endemic Philippine subspecies, which is
not surprising considering that nearly 80% of all resident, non-en-
demic Philippine passerines have endemic subspecies (Kennedy
et al., 2000). We included as outgroups all congeneric species with
available tissue samples; we also included all available cytochrome
c oxidase subunit I (COI) and cytochrome b (cytb) sequences from
GenBank for focal and congeneric outgroup species. Seventy-eight
percent of our samples came from vouchered specimens. Informa-
tion for each sample, including voucher location, is provided in
Supplementary Table 1.
2.2. DNA sequencing

DNA was extracted from liver, muscle, or blood with a Qiagen
DNeasy Blood & Tissue Kit. Two mitochondrial gene regions were
amplified and sequenced from all individuals: 655 bp of the COI
DNA barcoding region and an additional fragment of ca. 1230 bp
that included the entire cytb gene and approximately 30–40 bp
flanking each end of this gene. The dataset for C. saularis and its
outgroups lacked sufficient variability for the reconstruction of a
robust phylogenetic hypothesis, and a third mitochondrial gene,
NADH hydrogenase subunit 2 (ND2) was sequenced from all Cop-
sychus specimens. The entire cytb gene was amplified in two over-
lapping fragments, generally with the primer pairs Passer-cytb-
F1B/Passer-cytb-R1 and Passer-cytb-F3/Passer-cytb-R2, but other
primer pairs were used on recalcitrant samples (Supplementary
Table 2). The improved avian DNA barcoding primer pair Passer-
F1/Passer-R1 was used to amplify COI from all samples (Lohman
et al., 2009), and the primer pairs L5215/CopsyND2-R1 and Cop-
syND2-F2/H6313 were used to amplify the entire ND2 gene in
two overlapping fragments (Supplementary Table 2). Each PCR
reaction consisted of 2.5 ll 10� TaKaRa ExTaq buffer with
20 mM MgCl2, 1.2 ll of each 10 mM primer, 1 ll 100 mM dNTPs,
0.2 ll TaKaRa ExTaq polymerase, 16.9 ll H2O, with 2 ll template
DNA, for a total reaction volume of 25 ll, and was amplified with
the following thermal cycler conditions: 3 min at 95 �C followed
by 40 cycles of 1 min at 94 �C, 40 s at 58 �C (COI) or 53 �C (cytb),
and 1.5 min at 72 �C, and finally 5 min at 72 �C. The resulting prod-
ucts were cleaned with SureClean (BioLine), cycle-sequenced with
BigDye Terminator 3.1 (ABI), cleaned with CleanSEQ (Agencourt),
and sequenced in both directions on an ABI 3130xl DNA analyzer.

2.3. Phylogenetic analyses

Each gene was aligned separately for each bird genus. Align-
ments of COI sequences, which contained no indels, were per-
formed with Sequencher 4.6 (Gene Codes Corp.). Approximately
40 bases preceding the 50 end of cytb (comprising the 30 end of
the ND5 gene and an intergenic region of variable length) and
approximately 30 bases following the 30 end of cytb (comprising
part of the Thr-tRNA gene and an intergenic region of variable
length) were also sequenced. Each of these flanking regions was
aligned separately using MUSCLE (Edgar, 2004) implemented in
Seaview (Galtier et al., 1996); cytb was aligned in Sequencher.
All genes were concatenated using TaxonDNA 1.5 (Meier et al.,
2006) for subsequent analyses.

Phylogenetic analyses were conducted using several optimality
criteria. Bayesian phylogenetic analyses were performed with
MrBayes 3.1.2 (Ronquist and Huelsenbeck, 2003). The data were
divided into four partitions: each codon position of the protein
encoding genes was a separate partition, and the combined regions
flanking the cytb gene comprised the fourth partition. MrModeltest
2.2 (Nylander, 2004) was used to select an appropriate evolution-
ary model for each partition using Akaike’s Information Criterion
(Supplementary Table 3). Parameter values for the substitution
models were estimated from the data and allowed to vary indepen-
dently between partitions. Two runs of four chains (one cold and
three heated, temp = 0.25) were run simultaneously for 6 million
generations, and trees were sampled every 100 generations.
Changes in the posterior probabilities of up to twenty splits were
plotted over the generations of the analysis with the computer pro-
gram ‘‘Are We There Yet?” (Nylander et al., 2008) to confirm that
the chains had probably converged. Only the C. saularis tree topol-
ogy failed to stabilize after 6 million generations, but it did con-
verge after a second analysis of 10 million generations. After
completion of each analysis, the first 25% of the sampled trees
was discarded before a majority-rule consensus tree was calcu-
lated from the remaining trees.

Maximum likelihood bootstrap trees were constructed with
GARLI 0.96 (Zwickl, 2006). The appropriate evolutionary model
for each unpartitioned dataset was determined with MrModeltest
(Supplementary Table 3), and all model parameters were esti-
mated from the data. Each bootstrap replicate automatically termi-
nated after the search algorithm progressed 10,000 generations
without improving the tree topology by a log likelihood of 0.01
or better. A majority-rule consensus tree of the 500 bootstrap rep-
licate trees was calculated with PAUP� 4.0b10 (Swofford, 2002).

Parsimony bootstrap support for the phylogenetic estimates
was assessed with T.N.T. 1.1 (Goloboff et al., 2008). After increasing
the maximum number of saved trees to 5000, we performed a
bootstrap analysis using symmetric resampling (Goloboff et al.,
2003) implementing a traditional search with 33% change proba-
bility (5000 replicates). The results were summarized as absolute
frequencies.
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2.4. Genetic analyses

Uncorrected proportional genetic distances (p-distances)
among samples were calculated with PAUP�, and within-group
and between-group p-distances were calculated with MEGA 4.0
(Tamura et al., 2007). Standard errors of distances calculated with
MEGA were obtained through 1000 bootstrap replicates. In the ab-
sence of suitable fossils and known vicariance or dispersal events
that could be used to date the intraspecific divergences in these
species, we approximated the divergence time of extant Philippine
populations by dividing cytb p-distances between Philippine and
non-Philippine birds by 0.021. The mean, minimum, and maximum
p-distances were divided by this value to obtain a range of plausi-
ble dates. The evolutionary rate of 2.1% sequence divergence per
million years was recently validated by comparing 74 bird fossil
and biogeographic calibration points of varying ages with cytb se-
quence divergence (Weir and Schluter, 2008). The approximate
dates estimated with this method fell within the range calculated
with a relaxed clock, uncorrelated lognormal model (Sheldon
et al., 2009).
2.5. Extrapolation procedure

Extrapolations of the number of potential cryptic bird species
were based on the species included in Kennedy et al. (2000). Of
the 572 bird species occurring in the Philippines, 180 are endemic
or near-endemic (Kennedy et al., 2000). Because migratory species
are unlikely to undergo genetic differentiation in isolation, extrap-
olations focused on non-migratory, non-endemic passerines with
Philippine distributions not restricted to the peripheral Batan,
Babuyan, or Sulu islands. Of 240 Philippine passerine species, 108
are endemic, 53 are migratory, 4 are introduced, and 3 are geo-
graphically restricted. The remaining 72 are resident and non-en-
demic (Supplementary Table 4).

We suspect that birds in other orders that avoid flying over
water may show similar patterns. To estimate these numbers, we
performed analogous calculations on the number of non-endemic,
non-migratory species in each of the following orders: Apodifor-
mes, Caprimulgiformes, Columbiformes, Coraciiformes, Gruifor-
mes, Piciformes, and Psittaciformes.
3. Results and discussion

3.1. Phylogenetic and genetic patterns

Parsimony, maximum likelihood, and Bayesian methods all pro-
duced congruent phylogenetic hypotheses for each species, and
Philippine populations were always distinct from conspecific pop-
ulations outside of the Philippines (Fig. 1, Supplementary Fig. 1).
The only consistent phylogeographic pattern among the species
was the presence of a strongly supported clade containing exclu-
sively Philippine individuals, suggesting a lack of gene flow in or
out of the Philippine archipelago over time spans ranging from
approximately 1.5–4.6 My (Table 1).

For most species, intraspecific genetic distances were unusually
large. The smallest COI p-distance in all possible intraspecific com-
parisons between Philippine and non-Philippine samples exceeded
3% in five of the seven species we examined: A. longirostra, 8.8%; R.
javanica, 5.6%; P. goiavier, 4.9%; C. saularis, 3.9%; N. jugularis, 3.2%;
D. trigonostigma, 1.4%; L. nigra, 0.9% (Table 1). Although genetic dis-
tances merely approximate differentiation between species (Meier
et al., 2006; Meier et al., 2008) and alone are not diagnostic of spe-
cies limits (Winker, 2009), these distances are consistent with spe-
cies-level differentiation among birds (Kerr et al., 2007; Meier
et al., 2008). Further, levels of intraspecific variation overlapped
with congeneric inter-specific variation in five of the seven species
examined (Table 1). Closely related species occasionally share
identical COI (Kerr et al., 2009, 2007; Meier et al., 2008) or cytb
(Johns and Avise, 1998) sequences, and thus small genetic dis-
tances cannot be taken as evidence of conspecificity.

This genetic and phylogenetic evidence suggesting that Philip-
pine populations are distinct species is corroborated by morphol-
ogy. Morphologically-defined endemic Philippine subspecies are
recognized in all but one focal species, L. nigra, which is the least
genetically differentiated species in this study (Dickinson, 2003;
Peterson, 2006). These endemic subspecies are: A. longirostra flam-
mifera; C. saularis deuteronymus and C. s. mindanensis; D. trigonostig-
ma sibuyanicum and D. t. cinereigulare; N. jugularis jugularis and N. j.
obscurior; P. goiavier goiavier, P. g. samarensis, and P. g. suluensis; and
R. javanica nigritorquis. If one used a combination of monophyly,
morphological distinctiveness as recognized by current subspecific
taxonomy, and a 3% COI distance as a threshold for highlighting
possible unrecognized species, six putatively new endemic Philip-
pine species are revealed in our sample of seven widespread ‘‘spe-
cies”. We feel that further work will support these as full species but
we refrain from formally recognizing them pending additional data
(e.g., Collar, 2007). These species are found in the genera Arachno-
thera, Copsychus, Nectarinia, Pycnonotus (two endemic lineages),
and Rhipidura, which represent four separate passerine families.

3.2. Species-specific patterns

Several species-specific phylogeographic findings are notewor-
thy. First, C. saularis is paraphyletic with regard to the Madagascar
endemic C. albospecularis (Fig. 1B, Supplementary Fig. 1B), which
has prompted the elevation of Philippine populations to the spe-
cies C. mindanensis (Sheldon et al., 2009). Second, P. goiavier was
the only species in our sample with significant phylogenetic struc-
ture within the Philippines. Individuals from Mindanao formed a
monophyletic group distinct from other Philippine P. goiavier indi-
viduals (Fig. 1G, Supplementary Fig. 1F). Mindanao samples were
further differentiated by a unique 1 bp insertion flanking the 50

end of cytb and a minimum pairwise COI distance of 3.2% between
birds from Mindanao and elsewhere. Philippine individuals of D.
trigonostigma were differentiated from non-Philippine individuals
by an insertion of 10 bp flanking the 30 end of cytb.

Philippine bulbuls, including P. goiavier, may be prone to cryptic
diversification in the Philippines. Oliveros and Moyle (2010) found
that two other Pycnonotidae ‘‘species” with Philippine populations
were not monophyletic. Palawan and Bornean populations of Pycn-
onotus plumosus were genetically very divergent and did not form a
clade, prompting elevation of the Palawan populations to a new
species. Similarly, the smallest clade with all Ixos philippinus indi-
viduals also contained three other Ixos species, leading the authors
to divide I. philippinus into three endemic species.

There were no consistent intraspecific phylogeographic pat-
terns among the seven focal ‘‘species” across the Sunda shelf,
which implies that dispersal patterns were not contemporaneous
across the land bridges that joined Java, Sumatra, Borneo and the
Malay Peninsula as recently as 10,550 y BP (Sathiamurthy and
Voris, 2006). For example, every geographically defined popula-
tion of A. longirostra was monophyletic, including birds from Sin-
gapore and from Johor Bahru at the tip of peninsular Malaysia,
which are separated by less than 1 km of water (Supplementary
Fig. 1A). In contrast, COI sequences from several Singaporean R.
javanica were identical to individuals collected in East Kalimantan
on the far side of Borneo, and R. javanica specimens from the en-
tire Sunda shelf formed a single, undifferentiated clade (Fig. 1E,
Supplementary Fig. 1G). Given the dramatic movements of land
masses in SE Asia over the past several million years (Hall,
2001) and the fusion and separation of islands on the Sunda shelf
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Fig. 1. Bayesian consensus trees of (A) Arachnothera longirostra; (B) Copsychus saularis; (C) Lalage nigra; (D) Nectarinia jugularis; (E) Rhipidura javanica; (F) Dicaeum
trigonostigma; (G) Pycnonotus goiavier. Numbered nodes indicate approximate divergence between Philippine and non-Philippine clades (1) 4.6 ± 0.4 My; (2) 2.8 ± 0.3 My; (3)
1.6 ± 0.2 My; (4) 2.5 ± 0.2 My; (5) 1.5 ± 0.2 My. Clade support: = Bayesian posterior probability (B) P99, maximum likelihood bootstrap (ML) P95, and parsimony
bootstrap (P) P90; = B P 95, ML P 75, P P 70; = B P 90, ML P 50, P P 50; clades with B < 75 are collapsed. Colours of collapsed clades denote geographic locality of the
samples as indicated by the map; the yellow Copsychus clade represents Malagasy C. albospecularis.
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over the past several thousand years (Sathiamurthy and Voris,
2006), it seems unlikely that many common patterns will emerge
across taxa. Even within the Philippines, patterns of island coloni-
zation and dispersal vary widely among species, and Philippine
populations of several widespread bird species appear to have
colonized the archipelago more than once (Jones and Kennedy,
2008; Oliveros and Moyle, 2010).

Samples from Sulawesi were available for a single species,
N. jugularis. The three Sulawesi samples formed a strongly sup-
ported monophyletic group with six samples from the Solomon



Table 1
Genetic divergence at two mitochondrial loci in seven species of passerine birds widespread in SE Asia. Intraspecific and inter-specific divergence columns present the range of
uncorrected pairwise (p-) distances in all possible pairwise comparisons between conspecific and congeneric samples, respectively. Values for the smallest Philippine/non-
Philippine divergence represent the smallest distance between any Philippine and non-Philippine sample pair in all possible pairwise comparisons. Gray shading highlights
overlap of intra- and inter-specific genetic distances, and bold smallest divergence values highlight values larger than 0.0224, the largest intraspecific distance found in a previous
survey of intraspecific genetic diversity within bird species (Kerr et al., 2007). Including samples of Copsychus albospecularis in the C. saularis dataset (making nominal C. saularis
paraphyletic) did not affect any of the values reported in this table.
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Islands, and this was sister to the Philippine clade (Supplemen-
tary Figure 1E). Unfortunately, no Bornean specimens were avail-
able for this species. Because of its unique geological history,
endemism is high in Sulawesi (Evans et al., 2003), and additional
sampling from this island may reveal that – like the Philippines –
Sulawesi populations of ‘‘widespread” bird species are highly
genetically distinct. In addition, studies of genetic differentiation
between Solomon Island birds (Smith and Filardi, 2007) and con-
specifics found elsewhere will illuminate patterns of dispersal
across the Sahul shelf.

3.3. Estimation of Philippine avian endemism

Assuming that our sample is representative of Philippine popu-
lations of species that are considered widespread in SE Asia, the
data suggest that current alpha taxonomy underestimates the true
number of Philippine endemic bird species by at least 50%. This
estimate is based on the observation that there are 72 non-ende-
mic, resident Philippine passerine bird species (Kennedy et al.,
2000) and on our finding of six new putative species from our sam-
ple of seven, suggesting that 62 of these (86% of 72%) might have
cryptic Philippine lineages. It is unlikely that underestimation of
regional endemism is confined to the perching birds (Passerifor-
mes). We therefore extended this projection to terrestrial non-pas-
serine bird orders that are unlikely to fly over water and which
contain some endemic Philippine species (see section 2.5). If the
percentage of species with cryptically distinct Philippine lineages
is the same in these groups as in passerines, then 50 of these res-
ident, non-migratory species (86% of 58%) are projected to have
cryptic Philippine lineages. This suggests that, after additional tax-
onomic scrutiny, the percentage of endemic species in the entire
Philippine avifauna could increase from its present 31% to approx-
imately 50%. A recent molecular phylogenetic study of Asian bul-
buls (Pycnonotidae) (Oliveros and Moyle, 2010) raised endemic
subspecies to species status and split endemic species into multi-
ple species, providing independent evidence that Philippine bird
endemism is lower than currently estimated.

Studies of the factors contributing to endemicity and restricted
geographical ranges in birds are few, but Philippine species cur-
rently known to be endemic are generally dependent on intact for-
ests. This strongly suggests that our extrapolation is conservative,
because all the species sampled in this study prefer disturbed hab-
itats and are vagile, whereas many of the unsampled species are
more prone to differentiation because they inhabit closed forest
and disperse poorly.
Fewer than one-fifth of the world’s bird species are restricted to
islands, but over 90% of documented avian extinctions are island
endemics (Johnson and Stattersfield, 1990). This is because islands
generally support smaller populations that are more prone to
inbreeding and are more susceptible to natural disasters and
anthropogenic disturbance including habitat loss and predation
by introduced predators (Blackburn et al., 2004; Duncan and Black-
burn, 2007). Conservation resources are allocated toward protect-
ing endangered species – rarely subspecies – and the mistake of
regarding island endemics as populations of widespread species
has had dire consequences for endemic avifauna in other archipel-
agos (Hazevoet, 1996; Sangster, 2000).

4. Conclusions

Strongly supported monophyly, relatively large genetic dis-
tances, and morphological distinctiveness all suggest that a large
fraction of the ‘‘non-endemic” Philippine avifauna is composed of
unrecognized endemic species. Extrapolation from our data sug-
gests that avian endemicity may eventually be revised upwards
by as much as 50%. Among species, phylogeographic patterns
across the Sunda shelf evince a variety of dispersal histories, but
Philippine populations of all focal species were strongly monophy-
letic and seem to have diverged from other populations 1.5–
4.6 Ma. Our findings suggest that insular populations of many
widespread species may represent overlooked endemic species
presently lacking recognition and protection. This oversight is par-
ticularly troubling because island populations are especially prone
to extirpation (Biber, 2002; Groombridge, 2007) and because the
Philippine archipelago has lost >75% of its forests in the past cen-
tury (Ong et al., 2002).
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